Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,15:21,35-Bis(oxydiethylene)-5,8,11,18,25,28,31,38-octaoxa-1,15,21,35-tetraazacyclotetradecane-16,20,36,40-tetraone-benzene (1/2): a macrotricyclic tetralactam

Gary L. N. Smith,^a* Tam Nguyen,^b Douglas R. Powell^b and Richard W. Taylor^b

^aPoint Loma Nazarene University, Department of Chemistry, 3900 Lomaland Dr., Rohr Science 305E, San Diego, CA 92106, USA, and ^bDepartment of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019-3051, USA

Correspondence e-mail: GarySmith@pointloma.edu

Received 22 June 2009; accepted 7 July 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.089; data-to-parameter ratio = 15.4.

The macrotricyclic title compound, $C_{36}H_{64}N_4O_{14}\cdot 2C_6H_6$, is located on a crystallographic center of symmetry. The molecule has four tertiary amide bridgehead atoms and consists of two unsymmetrical 20-membered diazatetraoxamacrocycles (N₂O₄ donor atom set) connected through the N atoms by two lateral oxydiethylene bridges. The bridging subunits, together with the short bridging strand (NCCOCCN) from each monocycle, define a 24-membered ring (N₄O₄ donor atom set) that forms a central cavity.

Related literature

For general background to macrotricyclic ligands as receptors for cationic, anionic and neutral guests, see: Lehn (1973, 1988); Lehn *et al.* (1977). For related structures, see: Wiest & Weiss (1973); Fischer *et al.* (1977); Pascard *et al.* (1982); Rebizant *et al.* (1984); Groth (1986); Cheetham & Harding (1991); Bencini *et al.* (1992); Krakowiak *et al.* (1995); Plenio & Diodone (1995); Smith *et al.* (2007). For the synthesis, see: Dietrich *et al.* (1973); Cheney *et al.* (1978).

Experimental

Crystal data

$\begin{array}{l} C_{36}H_{64}N_4O_{14}\cdot 2C_6H_6\\ M_r = 933.13\\ \text{Triclinic, } P\overline{1}\\ a = 8.9632 \ (14) \ \text{\AA}\\ b = 11.988 \ (2) \ \text{\AA}\\ c = 12.806 \ (2) \ \text{\AA}\\ \alpha = 72.728 \ (5)^{\circ}\\ \beta = 71.758 \ (5)^{\circ} \end{array}$	$\gamma = 68.443 (6)^{\circ}$ $V = 1189.4 (3) Å^{3}$ Z = 1 Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K $0.41 \times 0.37 \times 0.30 \text{ mm}$
Data collection	
Bruker APEX CCD diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007) $T_{min} = 0.954, T_{max} = 0.978$	9363 measured reflections 4603 independent reflections 4198 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.089$ S = 1.00 4603 reflections	299 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.21 \text{ e } \text{ Å}^{-3}$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Oklahoma Center for the Advancement of Science and Technology (grant HR06–113). The authors also thank the National Science Foundation (CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2175).

References

- Bencini, A., Bianchi, A., Ciampolini, M., Dapporto, P., Fusi, V., Micheloni, M., Nardi, N., Paoli, P. & Valtancoli, B. (1992). J. Chem. Soc. Dalton Trans. pp. 2049–2054.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheetham, G. M. T. & Harding, M. M. (1991). Acta Cryst. C47, 2478-2479.
- Cheney, J., Kintzinger, J. P. & Lehn, J. M. (1978). Nouv. J. Chim. 2, 411–418.
- Dietrich, B., Lehn, J. M., Sauvage, J. P. & Blanzat, J. (1973). Tetrahedron, 29, 1629–1645.
- Fischer, J., Mellinger, M. & Weiss, R. (1977). *Inorg. Chim. Acta*, **21**, 259–263. Groth, P. (1986). *Acta Chem. Scand. Ser. A*, **40**, 154–156.
- Krakowiak, K. E., Bradshaw, J. S., Kou, X. & Dalley, N. K. (1995). J. Heterocycl. Chem. 32, 931–935.
- Lehn, J. M. (1973). Struct. Bond. 16, 1-69.
- Lehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89-112.
- Lehn, J. M., Simon, J. & Wagner, J. (1977). Nouv. J. Chim. 1, 77-84.
- Pascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 557–560.
- Plenio, H. & Diodone, R. (1995). J. Organomet. Chem. 492, 73-80.
- Rebizant, J., Spirlet, M. R., Barthelemy, P. & Desreux, J. F. (1984). Acta Cryst. C40, 484–486.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. L. N., Rocher, N. M., Powell, D. R. & Taylor, R. W. (2007). Acta Cryst. E63, o1253–o1255.
- Wiest, R. & Weiss, R. (1973). J. Chem. Soc. Chem. Commun. pp. 678-679.

Acta Cryst. (2009). E65, o1927 [doi:10.1107/S1600536809026531]

1,15:21,35-Bis(oxydiethylene)-5,8,11,18,25,28,31,38-octaoxa-1,15,21,35-tetraazacyclotetradecane-16,20,36,40-tetraone-benzene (1/2): a macrotricyclic tetralactam

G. L. N. Smith, T. Nguyen, D. R. Powell and R. W. Taylor

Comment

Macrotricyclic ligands are of interest as receptors for cationic, anionic and neutral guests (Lehn et al., 1977; Lehn, 1988). The title compound (I) was isolated as the 2 + 2 addition product during the synthesis of the corresponding bicyclic cryptand 3pp1.1. A related macrotricyclic tetraamine has been reported, but with the propylene groups in (I) replaced by benzene rings (Smith et al., 2007). Fig. 1 shows that (I) contains three monocyclic rings: a 24-membered ring, B (N1/O4/N7/O24A/N1A/ O4A/N7A/O24) and two 20-membered rings, A (N1/O4/N7/O11/O14/O17) and C (N1A/O4A/N7A/O11A/O14A/O17A). The two 20-membered macrocyclic rings form the ends of the skewed cylinder with two oxydiethylene bridges linking the macrocylic end groups. Each of the 20-membered rings (A and C) has an elliptical shape, with non-bonding distances of 4.495 (2)Å (N1...O11), 6.639 (2)Å (O4...O14), and 7.209 (2)Å (N7...O17). The planes defined by donor atoms (N1/N7/ O11/O14/O17) of rings A (and C) (average deviation = 0.1796 Å) are parallel, and form a dihedral angle of 100.7 (2)° with the plane defined by the nitrogen donor atoms in ring B. Thus, the centers of rings A and C do not overlap in the direction defined by the O4…O14 axis. The two 20-membered rings are oriented in an opposing fashion with respect to the plane defined by the N donor atoms in ring B. Similar behavior has been seen with other cylindrical tricyclic cryptands having unsymmetric end groups. (Groth, 1986; Cheetham & Harding, 1991; Plenio & Diodone, 1995). Fig. 2 shows that the nitrogen atoms in the 24-membered ring form the corners of a parallelogram defined by the following non-bonding distances and angles: 4.300 (2)Å (N1···N7); 6.901 (2)Å (N7···N1A); 74.0 (2)° (N1···N7···N1A); 106.0 (2)° (N7···N1···N7A). As a result, the 20-membered rings are also offset along the O24···O24A axis. Analogous macrotricyclic compounds also exhibit a skewed cylindrical shape (Bencini et al., 1992; Pascard et al., 1982; Rebizant et al., 1984: Smith et al., 2007).

Experimental

The 20-membered monocyclic diamine was prepared according to reported methods (Dietrich *et al.*, 1973). The tricyclic tetralactam was obtained as the 2 + 2 cycloaddition product from the reaction of 1,7-diaza-4,11,14,17-tetraoxacycloicosane (3.56 mmole) in 150 ml toluene and 2,2'-oxydiacetyl chloride (3.54 mmole) in 150 ml toluene. These solutions were added synchronously to 800 ml of toluene containing triethylamine (7.80 mmole) over a period of 2 h under high-dilution conditions (Dietrich *et al.*, 1973; Cheney *et al.*, 1978). The crude tetralactam was purified by recrystallization from benzene to give (I) in 10% overall yield. ESI-MS: $m/z = 799.5 (M + Na^+)$. Crystals suitable for X-ray crystallography were grown by vapor diffusion of heptane into a solution of (I) in benzene.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.99Å for RCH₂R and 0.95Å for H atoms in the aromatic solvent; $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to their labelled counterparts by (1-x, 1-y, 1-z).

1,15:21,35-Bis(oxydiethylene)-5,8,11,18,25,28,31,38-octaoxa-1,15,21,35- tetraazacyclotetradecane-16,20,36,40-tetraone-benzene (1/2)

$C_{36}H_{64}N_4O_{14} \cdot 2C_6H_6$	Z = 1
$M_r = 933.13$	$F_{000} = 504$
Triclinic, PT	$D_{\rm x} = 1.303 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 8.9632 (14) Å	Cell parameters from 7833 reflections
b = 11.988 (2) Å	$\theta = 2.3 - 28.3^{\circ}$
c = 12.806 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 72.728 \ (5)^{\circ}$	T = 100 K
$\beta = 71.758 \ (5)^{\circ}$	Block, colorless
$\gamma = 68.443 \ (6)^{\circ}$	$0.41 \times 0.37 \times 0.30 \text{ mm}$
V = 1189.4 (3) Å ³	

Data collection

Bruker APEX CCD diffractometer	4603 independent reflections
Radiation source: fine-focus sealed tube	4198 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.018$
T = 100 K	$\theta_{\rm max} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS: Sheldrick, 2007)	$h = -11 \rightarrow 11$

$T_{\min} = 0.954, \ T_{\max} = 0.978$	$k = -14 \rightarrow 13$
9363 measured reflections	$l = -15 \rightarrow 15$

Re	finement
nυ	memeni

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 0.42P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.089$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$
4603 reflections	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
299 parameters	Extinction correction: SHELXTL (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0 0145 (16)

methods Extinction coefficient: 0.0145 (16)

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.47767 (12)	0.74664 (8)	0.56224 (8)	0.0167 (2)
C2	0.53952 (14)	0.83074 (10)	0.46324 (9)	0.0186 (2)
H2A	0.6567	0.7900	0.4317	0.022*
H2B	0.5341	0.9039	0.4868	0.022*
C3	0.44488 (14)	0.87172 (10)	0.37224 (9)	0.0188 (2)
H3A	0.5076	0.9109	0.3015	0.023*
H3B	0.4303	0.7998	0.3585	0.023*
O4	0.28675 (10)	0.95714 (7)	0.40616 (7)	0.02112 (19)
C5	0.18854 (16)	0.99679 (11)	0.32485 (10)	0.0224 (3)
H5A	0.2614	0.9827	0.2508	0.027*
H5B	0.1317	1.0859	0.3176	0.027*
C6	0.06115 (15)	0.92948 (11)	0.35714 (10)	0.0217 (3)
H6A	-0.0156	0.9479	0.4289	0.026*
H6B	-0.0037	0.9605	0.2989	0.026*
N7	0.13369 (12)	0.79611 (9)	0.36959 (8)	0.0176 (2)
C8	0.12705 (14)	0.72108 (11)	0.48393 (9)	0.0179 (2)
H8A	0.1507	0.7626	0.5304	0.021*
H8B	0.2139	0.6412	0.4809	0.021*
C9	-0.03960 (14)	0.69865 (11)	0.53976 (9)	0.0208 (3)
H9A	-0.1261	0.7780	0.5470	0.025*
H9B	-0.0663	0.6605	0.4919	0.025*
C10	-0.03863 (15)	0.61574 (11)	0.65499 (10)	0.0215 (3)
H10A	-0.1487	0.6043	0.6904	0.026*
H10B	0.0429	0.5344	0.6479	0.026*
011	0.00290 (10)	0.66990 (7)	0.72305 (6)	0.02062 (19)
C12	-0.04284 (15)	0.61758 (12)	0.83951 (9)	0.0228 (3)

H12A	-0.0026	0.5271	0.8509	0.027*
H12B	-0.1645	0.6429	0.8651	0.027*
C13	0.02910 (15)	0.65877 (12)	0.90752 (10)	0.0236 (3)
H13A	0.0266	0.7453	0.8757	0.028*
H13B	-0.0368	0.6529	0.9860	0.028*
O14	0.19488 (10)	0.58292 (8)	0.90553 (7)	0.0235 (2)
C15	0.26383 (16)	0.59898 (12)	0.98450 (10)	0.0256 (3)
H15A	0.3544	0.5238	1.0025	0.031*
H15B	0.1782	0.6097	1.0548	0.031*
C16	0.32977 (16)	0.70713 (12)	0.94297 (10)	0.0254 (3)
H16A	0.2425	0.7826	0.9204	0.031*
H16B	0.3661	0.7186	1.0035	0.031*
017	0.46530 (10)	0.68442 (8)	0.84922 (7)	0.0226 (2)
C18	0.50076 (16)	0.79286 (12)	0.77925 (10)	0.0247 (3)
H18A	0.6099	0.7698	0.7272	0.030*
H18B	0.5070	0.8421	0.8267	0.030*
C19	0.37289 (16)	0.87074 (11)	0.71125 (10)	0.0235 (3)
H19A	0.4124	0.9382	0.6575	0.028*
H19B	0.2697	0.9081	0.7628	0.028*
C20	0.33413 (14)	0.80088 (10)	0.64589 (9)	0.0177 (2)
H20A	0.2915	0.7348	0.6996	0.021*
H20B	0.2461	0.8576	0.6072	0.021*
C21	0.54820 (14)	0.62431 (10)	0.56542 (9)	0.0159 (2)
O22	0.66849 (10)	0.58351 (7)	0.49363 (6)	0.01991 (19)
C23	0.46919 (14)	0.53806 (10)	0.66279 (9)	0.0180 (2)
H23A	0.4537	0.5610	0.7345	0.022*
H23B	0.3593	0.5472	0.6537	0.022*
O24	0.56807 (9)	0.41414 (7)	0.66696 (6)	0.01685 (18)
C25	0.70820 (14)	0.38705 (10)	0.71013 (9)	0.0184 (2)
H25A	0.6741	0.4119	0.7833	0.022*
H25B	0.7847	0.4319	0.6574	0.022*
C26	0.79233 (13)	0.24948 (10)	0.72452 (9)	0.0166 (2)
O27	0.79022 (10)	0.18395 (7)	0.81918 (6)	0.02115 (19)
C1S	0.23336 (16)	0.07749 (12)	0.97250 (11)	0.0275 (3)
H1S	0.2265	0.0058	1.0285	0.033*
C2S	0.13507 (16)	0.12252 (12)	0.89521 (10)	0.0258 (3)
H2S	0.0591	0.0824	0.8989	0.031*
C3S	0.14782 (15)	0.22620 (12)	0.81243 (10)	0.0253 (3)
H3S	0.0809	0.2566	0.7593	0.030*
C4S	0.25741 (15)	0.28561 (12)	0.80677 (10)	0.0252 (3)
H4S	0.2665	0.3560	0.7495	0.030*
C5S	0.35382 (15)	0.24199 (12)	0.88490 (11)	0.0257 (3)
H5S	0.4279	0.2833	0.8820	0.031*
C6S	0.34207 (16)	0.13823 (12)	0.96721 (11)	0.0273 (3)
H6S	0.4087	0.1083	1.0204	0.033*

Atomic displacement parameters (Å	²)
· · ·	· ·

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0211 (5)	0.0133 (5)	0.0153 (4)	-0.0056 (4)	-0.0043 (4)	-0.0019 (4)
C2	0.0237 (6)	0.0147 (5)	0.0178 (5)	-0.0080 (5)	-0.0051 (4)	-0.0009 (4)
C3	0.0229 (6)	0.0154 (5)	0.0176 (5)	-0.0050 (5)	-0.0048 (4)	-0.0034 (4)
O4	0.0265 (4)	0.0169 (4)	0.0188 (4)	-0.0007 (3)	-0.0096 (3)	-0.0049 (3)
C5	0.0309 (7)	0.0144 (6)	0.0202 (6)	-0.0014 (5)	-0.0122 (5)	-0.0013 (4)
C6	0.0238 (6)	0.0173 (6)	0.0207 (6)	0.0020 (5)	-0.0092 (5)	-0.0054 (5)
N7	0.0191 (5)	0.0153 (5)	0.0165 (5)	-0.0014 (4)	-0.0066 (4)	-0.0027 (4)
C8	0.0190 (6)	0.0196 (6)	0.0149 (5)	-0.0045 (5)	-0.0059 (4)	-0.0030 (4)
C9	0.0199 (6)	0.0238 (6)	0.0203 (6)	-0.0058 (5)	-0.0070 (5)	-0.0056 (5)
C10	0.0228 (6)	0.0219 (6)	0.0224 (6)	-0.0096 (5)	-0.0046 (5)	-0.0053 (5)
O11	0.0266 (4)	0.0225 (4)	0.0148 (4)	-0.0122 (4)	-0.0041 (3)	-0.0017 (3)
C12	0.0212 (6)	0.0262 (6)	0.0169 (6)	-0.0085 (5)	-0.0020 (4)	0.0006 (5)
C13	0.0221 (6)	0.0262 (6)	0.0168 (5)	-0.0020 (5)	-0.0028 (5)	-0.0047 (5)
O14	0.0207 (4)	0.0255 (5)	0.0236 (4)	-0.0031 (4)	-0.0064 (3)	-0.0075 (4)
C15	0.0279 (7)	0.0303 (7)	0.0184 (6)	-0.0102 (5)	-0.0079 (5)	-0.0005 (5)
C16	0.0303 (7)	0.0304 (7)	0.0164 (6)	-0.0111 (5)	-0.0030 (5)	-0.0062 (5)
O17	0.0236 (4)	0.0240 (5)	0.0183 (4)	-0.0061 (4)	-0.0051 (3)	-0.0026 (3)
C18	0.0294 (7)	0.0307 (7)	0.0198 (6)	-0.0161 (5)	-0.0047 (5)	-0.0056 (5)
C19	0.0367 (7)	0.0159 (6)	0.0181 (6)	-0.0090 (5)	-0.0057 (5)	-0.0034 (4)
C20	0.0205 (6)	0.0139 (5)	0.0165 (5)	-0.0020 (4)	-0.0050 (4)	-0.0031 (4)
C21	0.0190 (6)	0.0151 (5)	0.0154 (5)	-0.0044 (4)	-0.0071 (4)	-0.0031 (4)
O22	0.0209 (4)	0.0173 (4)	0.0186 (4)	-0.0047 (3)	-0.0017 (3)	-0.0038 (3)
C23	0.0179 (6)	0.0128 (5)	0.0200 (5)	-0.0026 (4)	-0.0027 (4)	-0.0032 (4)
O24	0.0179 (4)	0.0119 (4)	0.0206 (4)	-0.0031 (3)	-0.0066 (3)	-0.0027 (3)
C25	0.0217 (6)	0.0172 (6)	0.0181 (5)	-0.0054 (5)	-0.0076 (4)	-0.0039 (4)
C26	0.0160 (5)	0.0174 (6)	0.0185 (5)	-0.0051 (4)	-0.0074 (4)	-0.0028 (4)
O27	0.0256 (4)	0.0196 (4)	0.0169 (4)	-0.0050 (3)	-0.0081 (3)	-0.0009 (3)
C1S	0.0335 (7)	0.0196 (6)	0.0252 (6)	-0.0047 (5)	-0.0063 (5)	-0.0032 (5)
C2S	0.0256 (6)	0.0269 (7)	0.0273 (6)	-0.0102 (5)	-0.0033 (5)	-0.0092 (5)
C3S	0.0212 (6)	0.0309 (7)	0.0215 (6)	-0.0039 (5)	-0.0061 (5)	-0.0060 (5)
C4S	0.0230 (6)	0.0242 (6)	0.0227 (6)	-0.0059 (5)	-0.0008 (5)	-0.0029 (5)
C5S	0.0193 (6)	0.0302 (7)	0.0291 (6)	-0.0077 (5)	-0.0013 (5)	-0.0125 (5)
C6S	0.0246 (6)	0.0299 (7)	0.0256 (6)	0.0006 (5)	-0.0104 (5)	-0.0096 (5)

Geometric parameters (Å, °)

N1—C21	1.3606 (15)	C15—H15B	0.9900
N1—C2	1.4639 (14)	C16—O17	1.4245 (14)
N1—C20	1.4702 (14)	C16—H16A	0.9900
C2—C3	1.5137 (15)	C16—H16B	0.9900
C2—H2A	0.9900	O17—C18	1.4240 (14)
C2—H2B	0.9900	C18—C19	1.5163 (18)
C3—O4	1.4347 (14)	C18—H18A	0.9900
С3—НЗА	0.9900	C18—H18B	0.9900
С3—Н3В	0.9900	C19—C20	1.5281 (16)

O4—C5	1.4344 (14)	С19—Н19А	0.9900
C5—C6	1.5196 (18)	C19—H19B	0.9900
C5—H5A	0.9900	C20—H20A	0.9900
С5—Н5В	0.9900	C20—H20B	0.9900
C6—N7	1.4677 (15)	C21—O22	1.2272 (14)
С6—Н6А	0.9900	C21—C23	1.5314 (15)
С6—Н6В	0.9900	C23—O24	1.4178 (13)
N7—C26 ⁱ	1.3473 (15)	С23—Н23А	0.9900
N7—C8	1.4695 (14)	С23—Н23В	0.9900
С8—С9	1.5254 (16)	O24—C25	1.4202 (13)
C8—H8A	0.9900	C25—C26	1.5216 (16)
C8—H8B	0.9900	C25—H25A	0.9900
C9—C10	1.5153 (16)	C25—H25B	0.9900
С9—Н9А	0.9900	C26—O27	1.2321 (14)
С9—Н9В	0.9900	C26—N7 ⁱ	1.3473 (15)
C10—O11	1.4270 (14)	C1S—C2S	1.3879 (18)
C10—H10A	0.9900	C1S—C6S	1.3910 (19)
C10—H10B	0.9900	C1S—H1S	0.9500
O11—C12	1.4271 (13)	C2S—C3S	1.3884 (18)
C12—C13	1.5030 (17)	C2S—H2S	0.9500
C12—H12A	0.9900	C3S—C4S	1.3842 (19)
C12—H12B	0.9900	C3S—H3S	0.9500
C13—O14	1.4257 (15)	C4S—C5S	1.3856 (18)
С13—Н13А	0.9900	C4S—H4S	0.9500
С13—Н13В	0.9900	C5S—C6S	1.3848 (19)
O14—C15	1.4269 (14)	C5S—H5S	0.9500
C15—C16	1.5066 (18)	C6S—H6S	0.9500
C15—H15A	0.9900		
C21—N1—C2	117.64 (9)	O14—C15—H15B	108.9
C21—N1—C20	124.81 (9)	C16—C15—H15B	108.9
C2—N1—C20	117.31 (9)	H15A—C15—H15B	107.7
N1—C2—C3	113.65 (9)	O17—C16—C15	108.46 (10)
N1—C2—H2A	108.8	O17—C16—H16A	110.0
С3—С2—Н2А	108.8	C15—C16—H16A	110.0
N1—C2—H2B	108.8	O17—C16—H16B	110.0
C3—C2—H2B	108.8	C15—C16—H16B	110.0
H2A—C2—H2B	107.7	H16A—C16—H16B	108.4
O4—C3—C2	109.78 (9)	C18—O17—C16	113.39 (9)
O4—C3—H3A	109.7	O17—C18—C19	112.94 (10)
С2—С3—НЗА	109.7	O17—C18—H18A	109.0
O4—C3—H3B	109.7	C19—C18—H18A	109.0
С2—С3—Н3В	109.7	O17—C18—H18B	109.0
НЗА—СЗ—НЗВ	108.2	C19—C18—H18B	109.0
C5—O4—C3	112.59 (8)	H18A—C18—H18B	107.8
O4—C5—C6	112.06 (9)	C18—C19—C20	114.43 (10)
O4—C5—H5A	109.2	C18—C19—H19A	108.7
С6—С5—Н5А	109.2	С20—С19—Н19А	108.7
O4—C5—H5B	109.2	C18—C19—H19B	108.7

C6—C5—H5B	109.2	С20—С19—Н19В	108.7
H5A—C5—H5B	107.9	H19A—C19—H19B	107.6
N7—C6—C5	113.36 (10)	N1—C20—C19	113.30 (10)
N7—C6—H6A	108.9	N1—C20—H20A	108.9
С5—С6—Н6А	108.9	С19—С20—Н20А	108.9
N7—C6—H6B	108.9	N1—C20—H20B	108.9
С5—С6—Н6В	108.9	С19—С20—Н20В	108.9
Н6А—С6—Н6В	107.7	H20A—C20—H20B	107.7
C26 ⁱ —N7—C6	117.95 (9)	O22—C21—N1	122.34 (10)
C26 ⁱ —N7—C8	124.07 (9)	O22—C21—C23	120.75 (10)
C6—N7—C8	117.93 (9)	N1—C21—C23	116.91 (9)
N7—C8—C9	112.88 (9)	O24—C23—C21	111.41 (9)
N7—C8—H8A	109.0	O24—C23—H23A	109.3
С9—С8—Н8А	109.0	C21—C23—H23A	109.3
N7—C8—H8B	109.0	O24—C23—H23B	109.3
С9—С8—Н8В	109.0	C21—C23—H23B	109.3
H8A—C8—H8B	107.8	H23A—C23—H23B	108.0
C10—C9—C8	111.23 (9)	C23—O24—C25	112.15 (8)
С10—С9—Н9А	109.4	O24—C25—C26	107.45 (9)
С8—С9—Н9А	109.4	O24—C25—H25A	110.2
С10—С9—Н9В	109.4	C26—C25—H25A	110.2
С8—С9—Н9В	109.4	O24—C25—H25B	110.2
Н9А—С9—Н9В	108.0	C26—C25—H25B	110.2
011	109 22 (9)	H25A—C25—H25B	108 5
O11—C10—H10A	109.8	$027-C26-N7^{i}$	122.37 (10)
С9—С10—Н10А	109.8	O27—C26—C25	120.34 (10)
O11—C10—H10B	109.8	N7 ⁱ —C26—C25	117.29 (10)
С9—С10—Н10В	109.8	C2S—C1S—C6S	119.43 (12)
H10A—C10—H10B	108.3	C2S—C1S—H1S	120.3
C10-011-C12	111.42 (9)	C6S—C1S—H1S	120.3
O11—C12—C13	110.40 (10)	C1S—C2S—C3S	119.94 (12)
O11—C12—H12A	109.6	C1S—C2S—H2S	120.0
C13—C12—H12A	109.6	C3S—C2S—H2S	120.0
O11—C12—H12B	109.6	C4S—C3S—C2S	120.43 (12)
C13—C12—H12B	109.6	C4S—C3S—H3S	119.8
H12A—C12—H12B	108.1	C2S-C3S-H3S	119.8
Q14—C13—C12	109 13 (10)	C3S-C4S-C5S	119 77 (12)
014—C13—H13A	109.9	C3S - C4S - H4S	120.1
C12—C13—H13A	109.9	C5S - C4S - H4S	120.1
014—C13—H13B	109.9	C6S—C5S—C4S	119 96 (12)
C12—C13—H13B	109.9	C6S—C5S—H5S	120.0
H13A—C13—H13B	108.3	C4S—C5S—H5S	120.0
$C_{13} - O_{14} - C_{15}$	113 38 (9)	$C_{5} = C_{6} = C_{1}$	120.0 120.47(12)
014-015-016	113.48 (10)	C5S—C6S—H6S	119.8
014—C15—H15A	108.9	C1S-C6S-H6S	119.8
C16—C15—H15A	108.9		117.0
	(7,(12))	017 018 010 020	50.04 (14)
C_{21} N1 C_{2} C_{3}	92.07 (12)	01/-018-019-020	-30.94 (14)
U20-INI-U2-U3	-01.93(12)	UZI-INI-UZU-UI9	115./8(12)

N1—C2—C3—O4	73.21 (12)	C2-N1-C20-C19	-70.02 (12)			
C2—C3—O4—C5	-178.20 (9)	C18-C19-C20-N1	-61.35 (13)			
C3—O4—C5—C6	100.21 (11)	C2—N1—C21—O22	6.07 (15)			
O4—C5—C6—N7	-59.09 (13)	C20—N1—C21—O22	-179.75 (10)			
C5—C6—N7—C26 ⁱ	-75.20 (13)	C2—N1—C21—C23	-173.17 (9)			
C5—C6—N7—C8	102.34 (11)	C20—N1—C21—C23	1.00 (15)			
C26 ⁱ —N7—C8—C9	-102.18 (12)	O22—C21—C23—O24	10.07 (15)			
C6—N7—C8—C9	80.43 (12)	N1—C21—C23—O24	-170.67 (9)			
N7—C8—C9—C10	177.10 (9)	C21—C23—O24—C25	75.22 (11)			
C8—C9—C10—O11	57.98 (13)	C23—O24—C25—C26	172.99 (8)			
C9—C10—O11—C12	162.03 (9)	O24—C25—C26—O27	-110.47 (11)			
C10-011-C12-C13	169.66 (10)	O24—C25—C26—N7 ⁱ	68.94 (12)			
O11—C12—C13—O14	-83.13 (12)	C6S-C1S-C2S-C3S	1.05 (19)			
C12-C13-O14-C15	-168.70 (9)	C1S—C2S—C3S—C4S	-0.38 (19)			
C13-O14-C15-C16	-82.55 (13)	C2S—C3S—C4S—C5S	-0.64 (18)			
O14—C15—C16—O17	-65.05 (13)	C3S—C4S—C5S—C6S	0.98 (18)			
C15—C16—O17—C18	159.12 (10)	C4S-C5S-C6S-C1S	-0.31 (19)			
C16—O17—C18—C19	-71.92 (12)	C2S-C1S-C6S-C5S	-0.71 (19)			
Symmetry codes: (i) $-x+1, -y+1, -z+1$.						

Fig. 1

